4DWheat: diversity, domestication, discovery, delivery

Funding period: 2019-2023
Lead: Sylvie Cloutier
Total GRDI funding: $2,805,423

Wheat (Triticum spp.) is the most important crop for current and future global food security. Canada is a major supplier of wheat globally, and supports a Canadian agri-food industry of >$6 billion annually. Wheat improvement programs across the country are working to develop new wheat cultivars that can tolerate our hot and dry environments, are resilient to often erratic weather extremes, and are resistant to emerging diseases. 4DWheat will apply the very latest in genomic strategies to focus on two major challenges: enhancing yield and managing producer risk to important diseases. One strategy is to utilize genetic diversity lost from breeding since wheat was domesticated more than 10,000 years ago to fully capture diversity in wheat breeding.

Publications

  • Cloutier S, Reimer E, Khadka B, McCallum BD. 2023. Variations in exons 11 and 12 of the multi-pest resistance wheat gene Lr34 are independently additive for leaf rust resistance. Frontiers Plant Sci 13:1061490. https://doi.org/10.3389/fpls.2022.1061490
  • Fatima F, McCallum BD, Pozniak CJ, Hiebert C, McCartney C, Fedak G, You FM, Cloutier S. 2020. Identification of new leaf rust resistance loci in wheat and wild relatives by array-based SNP genotyping and association genetics. Frontiers Plant Sci 16(11):583738. https://doi.org/10.3389/fpls.2020.583738
  • Fedak G, Chi D, Hiebert C, Fetch T, McCallum B, Xue A, Cao W. 2021. Capturing multiple disease resistance in wheat through intergeneric hybridization. Biology 10(7):631. https://doi.org/10.3390/biology10070631
  • Klymiuk V, Haile T, Ens J, Wiebe K, N'Diaye A, Fatiukha A, Krugman T, Ben-David R, Hubner S, Cloutier S, Pozniak CJ. 2023. Genetic architecture of rust resistance in a wheat (Triticum turgidum) diversity panel. Frontiers Plant Sci 14:1145371. https://doi.org/10.3389/fpls.2023.1145371
  • Langridge P, Alaux M, Aldmeida NF, Ammar K, Baum M, Bekkaoui F, Bentley AR, Beres BL, Berger B, Braun H-J, Brown-Guedira G, Burt CJ, Caccamo MJ, Cattivelli L, Charmet G, Civáň P, Cloutier S, Cohan J-P, Devaux PJ, Doohan FM, Dreccer MF, Ferrahi M, Germán SE, Goodwin SB, Griffiths S, Guzmán C, Handa H, Hawkesford MJ, He Z, Huttner E, Ikeda TM, Kilian B, King IP, King J, Kirkegaard JA, Lage J, Le Gouis J, Mondal S, Mullins E, Ordon F, Ortiz-Monasterio JI, Özkan H, Öztürk I, Pereya SA, Pozniak CJ, Quesneville H, Quincke MC, Rebetzke GJ, Reif JC, Saavedra-Bravo T, Schurr U, Sharma S, Singh SK, Singh RP, Snape JW, Tadesse W, Tsujimoto H, Tuberosa R, Willis TG, Zhang X. 2022. Meeting the challenges facing wheat production: the Strategic Research Agenda of the Global Wheat Initiative. Agronomy 12(11):2767. https://doi.org/10.3390/agronomy12112767
  • McCallum B, Cloutier S, Hiebert C, Jordan M. 2021. Leaf tip necrosis and seedling leaf rust resistance conditioned by Lr34 in wheat grown at low temperatures. Can J Plant Pathol 43:S211-S217. https://doi.org/10.1080/07060661.2021.1960611
  • Rajagopalan N, Lu Y, Burton IW, Monteil-Rivera F, Halasz A, Reimer E, Tweidt R, Brûlé-Babel A, Kutcher HR, You FM, Cloutier S, Cuperlovic-Culf M, Hiebert CW, McCallum BD, Loewen MC. 2020. A phenylpropanoid diglyceride associates with the leaf rust resistance Lr34res gene in wheat. Phytochemistry 178, 112456. http://dx.doi.org/10.1016/j.phytochem.2020.112456
  • Sharma JS, McCartney CA, McCallum BD, Hiebert CW. 2022. Fine mapping and marker development for the wheat leaf rust resistance gene Lr32. G3 Genes|Genomes|Genetics, 13(2):jkac274. https://doi.org/10.1093/g3journal/jkac274
  • Sharma JS, McCallum BD, Hiebert CW. 2022. Development of single nucleotide polymorphism-based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum). Plant Breeding 141:204-211. https://doi.org/10.1111/pbr.13007
  • Vasudevan A, Lévesque-Lemay M, Edwards T, Cloutier S. 2023. Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploidy wheat. Comm Biol 6:426. https://doi.org/10.1038/s42003-023-04781-7
  • Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri JN, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, Venturini L, Bevan M, Clavijo B, Koo DH, Ens J, Wiebe K, N'Diaye A, Fritz AK, Gutwin C, Fiebig A, Fosker C, Fu BX, Accinelli GG, Gardner KA, Fradgley N, Gutierrez-Gonzalez J, Halstead-Nussloch G, Hatakeyama M, Koh CS, Deek J, Costamagna AC, Fobert P, Heavens D, Kanamori H, Kawaura K, Kobayashi F, Krasileva K, Kuo T, McKenzie N, Murata K, Nabeka Y, Paape T, Padmarasu S, Percival-Alwyn L, Kagale S, Scholz U, Sese J, Juliana P, Singh R, Shimizu-Inatsugi R, Swarbreck D, Cockram J, Budak H, Tameshige T, Tanaka T, Tsuji H, Wright J, Wu J, Steuernagel B, Small I, Cloutier S, Keeble-Gagnère G, Muehlbauer G, Tibbets J, Nasuda S, Melonek J, Hucl PJ, Sharpe AG, Clark M, Legg E, Bharti A, Langridge P, Hall A, Uauy C, Mascher M, Krattinger SG, Handa H, Shimizu KK, Distelfeld A, Chalmers K, Keller B, Mayer KFX, Poland J, Stein N, McCartney CA, Spannagl M, Wicker T, Pozniak CJ. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588(7837):277-283. https://doi.org/10.1038/s41586-020-2961-x
  • Wang L, Zhu T, Rodriguez JC, Deal KR, Dubcovsky J, McGuire PE, Lux T, Spannagl M, Mayer KFX, Baldrich P, Meyers BC, Huo N, Gu YQ, Zhou H, Devos KM, Bennetzen JL, Unver T, Budak H, Gulick PJ, Galiba G, Kalapos B, Nelson DR, Li P, You FM, Luo MC, Dvorak J. 2021. Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3 (Bethesda), Dec8; 11(12):jkab325. https://doi.org/10.1093/g3journal/jkab325

Contact us

For additional information, please contact:
Genomics R&D Initiative
Email: info@grdi-irdg.collaboration.gc.ca