Targeted and Useful Genomics for Barley and Oat (Tugboat)

Funding period: 2019-2024
Lead: Nick Tinker
Total GRDI funding: $1,411,080

Barley is grown on ~2.5 million hectares, producing ~7.9 million tonnes of grain worth over $1.5 billion. Oat is grown on ~1 million hectares, producing ~3.4 million tonnes of grain worth at least $47 million. While both crops are used primarily for animal feed, their use and value for food and malt are increasingly important. Both crops also support large export markets – Canada being the leading world exporter of oats, and the second largest exporter of malt barley. Both barley and oat are consumed as whole grains and/or whole-grain ingredients, and both provide high levels of soluble fibre in the form of β-glucan, which has health benefits. Barley is also the major source of malt for use in brewing. Because these food uses command higher farm-gate prices, grain quality and grain composition are important breeding objectives, along with yield and disease resistance, in both crops. This project will address three primary objectives in both crops: to increase the speed and efficiency of cultivar development, and to measurably improve the average quality of advanced germplasm in the breeding streams; to prepare and refine genomic resources, anticipating and proactively responding to opportunities in targeted gene discovery and deployment; and to cultivate stronger and more effective partnerships that will flourish beyond the scope and timeframe of this project.

Publications

  • Abed A, Badea A, Beattie A, Khanal R, Tucker J, Belzile F. 2022. A high-resolution consensus linkage map for barley based on GBS-derived genotypes. Genome, 65 (2). https://doi.org/10.1139/gen-2021-0055
  • Bekele WA, Itaya A, Boyle B, Yan W, Mitchell Fetch J, Tinker NA. 2020. A targeted genotyping-by-sequencing tool (rapture) for genomics-assisted breeding in oat. Theoretical and Applied Genetics. 133:653-64. https://doi.org/10.1007/s00122-019-03496-w
  • Brodführer S, Mohler V, Stadlmeier M, Okoń S, Beuch S, Mascher M, Tinker NA, Bekele WA, Hackauf B, Herrmann MH. Genetic mapping of the powdery mildew resistance gene Pm7 on oat chromosome 5D. 2023. Theoretical and Applied Genetics. 136(3):53. https://doi.org/10.1007/s00122-023-04288-z
  • Canales FJ, Montilla-Bascón G, Bekele WA, Howarth CJ, Langdon T, Rispail N, Tinker NA, Prats E. 2021. Population genomics of Mediterranean oat (A. sativa) reveals high genetic diversity and three loci for heading date. Theoretical and Applied Genetics volume, 134(7), 2063-2077. http://doi.org/10.1007/s00122-021-03805-2
  • Fu Y.-B. 2023. Assessing Genetic Distinctness and Redundancy of Plant Germplasm Conserved Ex Situ Based on Published Genomic SNP Data. Plants 12:1476. https://doi.org/10.3390/plants12071476
  • Fu Y-B, Li P, Biligetu B. 2019. Developing chloroplast genomic resources from 25 avena species for the characterization of oat wild relative germplasm. Plants 8(11):438. https://doi.org/10.3390/plants8110438
  • Fu YB, Peterson GW, Horbach C. 2023. Deleterious and Adaptive Mutations in Plant Germplasm Conserved Ex Situ. Molecular Biology and Evolution, [online] 40(12), http://dx.doi.org/10.1093/molbev/msad238
  • Fu YB, Peterson GW, Nevo E, Badea A. 2024. Intensified Selection, Elevated Mutations, and Reduced Adaptation Potential in Wild Barley in Response to 28 Years of Global Warming. Sci 6(1),16. https://doi.org/10.3390/sci6010016
  • Gordon TC, Jin Y, Tinker NA, Bekele W, Gale S, Bockelman H, Bonman JM. 2022. Comparative sequencing and SNP marker validation for oat stem rust resistance gene Pg6 in a diverse collection of Avena accessions. Theoretical and Applied Genetics, 135(4): 1307-1318. https://doi.org/10.1007/s00122-022-04032-z
  • Jellen EN, Wight CP, Spannagl M, Blake VC, Chong J, Herrmann MH, Howarth CJ, Huang Y-F, Juqing J, Katsiotis A, Langdon T, Li C, Park R, Tinker NA, Sen TZ. 2024. A uniform gene and chromosome nomenclature system for oat (Avena spp.). Crop & Pasture Science 75, CP23247. https://doi.org/10.1071/CP23247
  • Kamal N, Tsardakas Renhuldt N, Bentzer J, Gundlach H, Haberer G, Juhasj A, Lux T, Bose U, Tye-Din J, Lang D, van Gessel N, Reski R, Fu Y-B, Spégel P, Ceplitis A, Himmelbach A, Waters AJ, Bekele WA, Colgrave M, Hansson M, Stein N, Mayer K, Jellen EN, Maughan PJ, Tinker NA, Mascher M., Olsson O, Spannagl M, Sirijovski N. 2022. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 606: 13-119. https://doi.org/10.1038/s41586-022-04732-y
  • Kebede AZ, Bekele WA, Mitchell Fetch JW, Beattie AD, Chao S, Tinker NA, Fetch TG, McCartney CA. 2020. Localization of the stem rust resistance gene Pg2 to linkage group Mrg20 in cultivated oat (Avena sativa). Phytopathology 110(10):1721-1726. http://doi.org/10.1094/PHYTO-03-20-0076-R
  • Klos KE, Yimer BA, Howarth CJ, McMullen MS, Sorrells ME, Tinker NA, Yan W, Beattie AD. 2021. The genetic architecture of milling quality in spring oat lines of the collaborative oat research enterprise. Foods, [online] 10(10). https://dx.doi.org/10.3390/foods10102479
  • Li X, Guo T, Wang J, Bekele WA, Sukumaran S, Vanous AE, McNellie JP, Cortes LT, Lopes MS, Lamkey KR, Westgate ME, McKay JK, Archontoulis SV, Reynolds MP, Tinker NA, Schnable PS, Yu J. 2021. An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Molecular Plant, [online] 14(6), 874-887. http://dx.doi.org/10.1016/j.molp.2021.03.010
  • Mahmoud M, Zhou Z, Kaur R, Bekele W, Tinker NA, Singh J. 2022. Toward the Development of Ac/Ds Transposon-mediated Gene Tagging System for Functional Genomics in Oat (Avena sativa L.). Functional and Integrative Genomics. 22:669-681. https://doi.org/10.1007/s10142-022-00861-9
  • Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, Brouwer CR, Reid RR, Jay JJ, Bekele WA, Jackson EW, Tinker NA, Langdon T, Schlueter JA, Jellen EN. 2019. Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biol. 17(1):92. https://doi.org/10.1186/s12915-019-0712-y
  • Mellers G, Mackay I, Cowan S, Griffiths I, Martinez-Martin P, Poland JA, Bekele W, Tinker NA, Bentley AR, Howarth CJ. 2020. Implementing within-cross genomic prediction to reduce oat breeding costs. The Plant Genome 13(1):e20004. http://doi.org/10.1002/tpg2.20004
  • Mehtab-Singh, Tripathi RK, Bekele WA, Tinke NA. Differential expression and global analysis of miR156/SQUAMOSA promoter binding-like proteins (SPL) module in oat. Sci Rep 14, 9928 (2024). https://doi.org/10.1038/s41598-024-60739-7
  • Tinker NA, Wight CP, Bekele WA, Yan W, Jellen EN, Tsardakas Renhuldt N, Lux T, Spannagl M, Mascher M. 2022. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Communications Biology, 5: 474. https://doi.org/10.1038/s42003-022-03256-5
  • Wight CP, Blake VC, Jellen EN, Yao E, Sen TZ, Tinker NA. 2024.One hundred years of comparative genetic and physical mapping in cultivated oat (Avena sativa). Crop and Pasture Science. Jan 19;75(2). https://doi.org/10.1071/CP23246
  • Xu W, Tucker JR, Bekele WA, You FM, Fu Y-B, Khanal R, Yao Z, Singh J, Boyle B, Beattie AD, Belzile F, Mascher M, Tinker NA, Badea A. 2021. Genome assembly of the Canadian two-row malting barley cultivar AAC synergy. G3 Genes|Genomes|Genetics, 11(4) jkab031. https://doi.org/10.1093/g3journal/jkab031
  • Yan H, Zhou P, Peng Y, Bekele WA, Ren C, Tinker NA, Peng Y. 2020. Genetic diversity and genome-wide association analysis in Chinese hulless oat germplasm. Theoretical and Applied Genetics. 133(12):3365-3380. http://doi.org/10.1007/s00122-020-03674-1
  • You FM. 2023. Plant Genomics—Advancing Our Understanding of Plants. Int. J. Mol. Sci. 2023, 24, 11528. https://doi.org/10.3390/ijms241411528
  • Zhao J, Kebede AZ, Bekele WA, Menzies JG, Chong J, Mitchell Fetch JW, Tinker NA, Beattie AD, Peng YY, McCartney CA. 2020. Mapping of the oat crown rust resistance gene PC39 relative to single nucleotide polymorphism markers. Plant Disease 104(5):1507-1513. http://dx.doi.org/10.1094/PDIS-09-19-2002-RE

Contact us

For additional information, please contact:
Genomics R&D Initiative
Email: info@grdi-irdg.collaboration.gc.ca