Résistance aux antimicrobiens (projet RAM)

Période de financement : 2016-2022
Ministères et organismes participants : Agriculture et Agroalimentaire Canada, Agence canadienne d'inspection des aliments, Santé Canada, Conseil national de recherches du Canada, Agence de la santé publique du Canada
Responsable : Ed Topp, AAC
Investissement global de l'IRDG : 11 144 726 $

L'apparition d'une résistance aux antibiotiques chez les bactéries qui y étaient autrefois sensibles constitue de nos jours une des menaces les plus sérieuses qui planent sur la santé au niveau mondial. Si l'on n'agit pas, d'ici à 2050, dix millions de personnes pourraient périr chaque année des suites de cette résistance. Le projet sur la résistance aux antimicrobiens recourt à la génomique pour nous aider à comprendre comment la production d'aliments favorise le développement d'une résistance importante pour la santé humaine. On examine les stratégies permettant de combattre cette résistance dans les systèmes de production alimentaires. Le projet s'inscrit dans le Plan d'action fédéral sur la résistance et le recours aux antimicrobiens au Canada. Des chercheurs de 5 ministères et organismes fédéraux participent au projet.

Faits saillants

  • 6 ans de collaboration
  • 23 scientifiques et leurs équipes
  • 5 ministères et organismes fédéraux

Principales réalisations

  • Une compréhension des processus critiques qui contribuent à l'émergence de la RAM dans les systèmes de production alimentaire
  • Une perspective sur les voies d'exposition critiques par lesquelles les bactéries RAM d'origine agricole atteignent les humains
  • Des outils et une infrastructure analytique pour élucider la transmission de la résistance aux antimicrobiens
  • Des alternatives aux antibiotiques

Retombées

  • Décisions éclairées en matière de santé publique et de production d'aliments permettant de s'attaquer à l'une des menaces les plus importante pesant actuellement sur la santé dans le monde
  • Résistance aux antimicrobiens diminuée dans les systèmes de production d'aliments

Publications

  • Adator EH, Narvaez-Bravo C, Zaheer R, et al. 2020. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms. 8(6):E885. https://doi.org/10.3390/microorganisms8060885 (en anglais seulement)
  • Adator EH, Walker M, Narvaez-Bravo C, et al. 2020. Whole Genome Sequencing Differentiates Presumptive Extended Spectrum Beta-Lactamase Producing Escherichia coli along Segments of the One Health Continuum. Microorganisms. 8(3):448. https://doi.org/10.3390/microorganisms8030448 (en anglais seulement)
  • Banerjee S, Gill A, Pagotto F, Tamber S, Ronholm J. 2019. Changes detected in the genome sequences of Escherichia coli, Listeria monocyto genes, Vibrio parahaemolyticus, and Salmonella enterica after serial subculturing. Can J Microbiol. 29:1-9. https://doi.org/10.1139/cjm-2019-0235 (en anglais seulement)
  • Boyd D, Lefebvre B, Mataseje L, Gagnon S, Roger M, Savard P, Longtin J, Mulvey M. 2020. Enterobacter sp. N18-03635 harbouring blaFRI-6 class A carbapenemase, Canada. Antimicrobial Agents and Chemotherapy. 75: 486-488. https://doi.org/10.1093/jac/dkz438 (en anglais seulement)
  • Boyd D, Lisboa L, Rennie R, Zhanel GG, Dingle T, Mulvey M. 2019. Identification of a novel metallo-β-lactamase, CAM-1, in clinical Pseudomonas aeruginosa isolates from Canada. Journal of Antimicrobial Chemotherapy. 74:1563-1567. https://doi.org/10.1093/jac/dkz066 (en anglais seulement)
  • Boyd D, Mataseje L, Pelude L, Mitchell R, Bryce E, Roscoe D, Embree J. Katz K, Kibsey P, Lavallee C, Simor A, Taylor G, Turgeon N, Langley J, Amaratunga K, Mulvey M. 2019. Results from the Canadian Nosocomial Infection Surveillance Program for Detection of Carbapenemase Producing Acinetobacter spp. in Canadian hospitals, 2010-2016. Journal of Antimicrobial Chemotherapy. 74:315-320. https://doi.org/10.1093/jac/dky416 (en anglais seulement)
  • Carson C, Li X-Z, Agunos A, Loest D, Chapman B, Finley R, Mehrotra M, Sherk LM, Gaumond R, Irwin R. 2019. Ceftiofur-resistant Salmonella enterica serovar Heidelberg of poultry origin – a risk profile using the Codex framework. Epidemiol. Infect. 147:e296. https://doi.org/10.1017/s0950268819001778 (en anglais seulement)
  • Collineau L, Boerlin P, Carson CA, Chapman B, Fazil A, Hetman B, McEwen SA, Parmley EJ, Reid-Smith RJ, Taboada EN, Smith BA. 2019. Integrating whole-genome sequencing data into quantitative risk assessment of foodborne antimicrobial resistance: A review of opportunities and challenges. Front. Microbiol. 10:1107. https://doi.org/10.3389/fmicb.2019.01107 (en anglais seulement)
  • Collineau L, Chapman B, Bao X, Sivapathasundaram B, Carson CA, Fazil A, Reid-Smith RJ, Smith BA. 2020. A farm-to-fork quantitative risk assessment model for Salmonella Heidelberg resistant to third-generation cephalosporins in broiler chickens in Canada. International Journal of Food Microbiology. Volume 330. https://doi.org/10.1016/j.ijfoodmicro.2020.108559 (en anglais seulement)
  • Collineau L, Phillips C, Agunos A, Carson C, Chapman B, Fazil A, Reid-Smith R, Smith BA. 2020. A within-flock model of Salmonella Heidelberg transmission in broiler chickens. Prev. Vet. Med. 174:104823. https://doi.org/10.1016/j.prevetmed.2019.104823 (en anglais seulement)
  • Cooper AL, Carrillo CD, Deschênes M, Blais BW. 2020. Genomic markers for quaternary ammonium compound resistance as a persistence indicator for Listeria monocytogenes contamination in food manufacturing environments. J. Food. Prot. https://doi.org/10.4315/JFP-20-328 (en anglais seulement)
  • Cooper AL, Carter C, McLeod H, Wright M, Sritharan P, Tamber S, et al. 2021. Detection of carbapenem-resistance genes in bacteria isolated from wastewater in Ontario. FACETS. https://doi.org/10.1139/facets-2020-0101 (en anglais seulement)
  • Cooper AL, Low AJ, Koziol AG, Thomas MC, Leclair D, Tamber S, Wong A, Blais BW, Carrillo CD. 2020. Whole genome sequence-based predictions of serotype and antimicrobial resistance for Salmonella isolates from Canadian poultry. Frontiers in Microbiology. 11: 549. https://doi.org/10.3389/fmicb.2020.00549 (en anglais seulement)
  • Das Q, Lepp D, Yin X, Ross K, McCallum J L, Warriner K, Diarra M S. 2019. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS One.3. 14(7):e0219163. https://doi.org/10.1371/journal.pone.0219163 (en anglais seulement)
  • Das Q, Islam MdR, Lepp D, Tang J, Yin X, Mats L, Liu H, Ross K, Kennes YM, Yacini H, Warriner K, Marcone MF, Diarra MS. 2020. Gut microbiota, blood metabolites and spleen immunity in broiler chickens fed berry pomaces and phenolic-enriched extractives. Frontiers Veterinary Science. 7:150. https://doi.org/10.3389/fvets.2020.00150 (en anglais seulement)
  • Das Q, Tang J, Yin X, Ross K, Warriner K, Marcone MF, Diarra MS. 2020. Organic cranberry pomace and its ethanolic extractives as feed supplement in broiler: impacts on serum immunoglobulin titers, liver and bursal immunity. Poultry Science. 100(2):517-526. https://doi.org/10.1016/j.psj.2020.09.044 (en anglais seulement)
  • Diarra MS, Hassan YI, Block GS, Drover JC-G, Delaquis P, Oomah BD. 2020. Antibacterial activities of a polyphenolic-rich extract prepared from American cranberry (Vaccinium macrocarpon) fruit pomace against Listeria spp. LWT - Food Science and Technology. 123:109056. https://doi.org/10.1016/j.lwt.2020.109056 (en anglais seulement)
  • Diarra MS, Zhao X, Butaye P. 2021. Editorial: Antimicrobial Use, Antimicrobial Resistance, and the Microbiome in Food Animals. Front. Vet. Sci. 7:638781. http://doi.org/10.3389/fvets.2020.638781 (en anglais seulement)
  • Eshaghi A, Zittermann S, Bharat A, Mulvey MR, Allen VG, Patel SN. 2019. Importation of extensively drug resistant (XDR) Salmonella Typhi cases in Ontario, Canada. Antimicrobial Agents and Chemotherapy. 64:e02581-19. https://doi.org/10.1128/AAC.02581-19 (en anglais seulement)
  • Hannon SJ, Brault SA, Otto SJG, Morley PS, McAllister TA, Booker CW, Gow SP. 2020. Feedlot Cattle Antimicrobial Use Surveillance Network: A Canadian Journey: Frontiers in Veterinary Science. 7:596042. https://doi.org/10.3389/fvets.2020.596042 (en anglais seulement)
  • Holman DB, Gzyl KE, Zaheer R, Jones TH, McAllister TA. 2019. Draft Genome Sequences of 43 Enterococcus faecalis and Enterococcus faecium Isolates from a Commercial Beef Processing Plant and Retail Ground Beef. Microbiol Resour Announc. 8(42):e00974-19. https://doi.org/10.1128/MRA.00974-19 (en anglais seulement)
  • Islam MdR, Hassan YI, Das Q, Lepp D, Hernandez M, Godfrey DV, Orban S, Ross K, Delaquis P, Diarra MS. 2020. Dietary organic cranberry pomace influences multiple blood biochemical parameters and cecal microbiota in pasture-raised broiler chickens. Journal of Functional Foods 72:104053. https://doi.org/10.1016/j.jff.2020.104053 (en anglais seulement)
  • Kahn LH, Bergeron G, Bourassa MW, De Vegt B, Gill J, Gomes F, Malouin F, Opengart K, Ritter GD, Singer R, Storrs C, Topp E. 2019. From farm management to bacteriophage therapy: established and emerging strategies to reduce antibiotic use in animal agriculture. N.Y. Acad. Sci. 1441(1): 31-39. https://doi.org/10.1111/nyas.14034 (en anglais seulement)
  • Laskey A, Devenish J, Kang M, Savic M, Chmara J, Dan H, Lin M, Robertson J, Bessonov K, Gurnik S, Liu K, Nash JHE, Topp E, Guan J. 2021. Mobility of β-lactam resistance under ampicillin treatment in gut microbiota suffering from pre-disturbance. Microb Genom. 7(12):000713. https://doi.org/10.1099/mgen.0.000713 (en anglais seulement)
  • Laskey A, Ottenbrite M, Devenish J, Kang M, Savic M, Nadin-Davis S, Chmara J, Lin M, Robertson J, Bessonov K, Gurnik S, Liu K, Nash JHE, Scott A, Topp E, Guan J. 2020. Mobility of β-Lactam resistance under bacterial co-infection and ampicillin treatment in a mouse model. Front. Microbiol. 11:1591. https://doi.org/10.3389/fmicb.2020.01591 (en anglais seulement)
  • Lau CH, DeJong EN, Dussault F, Carrillo C, Stogios PJ, Savchenko A, Topp E. 2020. A penicillin-binding protein that can promote advanced-generation cephalosporin resistance and genome adaptation in the opportunistic pathogen Pseudomonas aeruginosa. Int J Antimicrob Agents. 55(3):105896. https://doi.org/10.1016/j.ijantimicag.2020.105896 (en anglais seulement)
  • Lau CH-F, Tien Y-C, Stedtfeld RD, Topp E. 2020. Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements. Sci.Total Environ. 727:138520. https://doi.org/10.1016/j.scitotenv.2020.138520 (en anglais seulement)
  • Links MG, Dumonceaux TJ, McCarthy EL, Hemmingsen SM, Topp E, Town JR. 2021. CaptureSeq: Hybridization-based enrichment of cpn60 gene fragments reveals the community structures of synthetic and natural microbial ecosystems. Microorganisms 9(4): 816. https://doi.org/10.3390/microorganisms9040816 (en anglais seulement)
  • Liu X, Teixeira JS, Ner S, Ma K, Petronella N, Banerjee S, Ronholm J. 2020. Exploring the potential of the microbiome as a marker of the geographic origin of fresh seafood. Front. Microbiol. 11:e696. https://doi.org/10.3389/fmicb.2020.00696 (en anglais seulement)
  • Ma Y, Chen J, Fong K, Nadya S, Allen K, Laing C, Ziebell K, Topp E, Carroll LM, Wiedmann M, Delaquis P, Wang S. 2021. Antibiotic resistance in shiga toxigenic Escherichia coli isolates from surface waters and sediments in a mixed use urban agricultural landscape. Antibiotics. 10(3):237. https://doi.org/10.3390/antibiotics10030237 (en anglais seulement)
  • McDonald KL, Garland S, Carson CA, Gibbens K, Parmley EJ, Finley R, MacKinnon MC. 2021. Measures used to assess the burden of ESBL-producing Escherichia coli infections in humans: a scoping review. JAC Antimicrob Resist. 2021 Feb 14;3(1):dlaa104. https://doi.org/10.1093/jacamr/dlaa104 (en anglais seulement)
  • MacKinnon MC, Sargeant JM, Pearl DL, Reid-Smith RJ, Carson CA, Parmley EJ, McEwen SA. 2020. Evaluation of the health and healthcare system burden due to antimicrobial-resistant Escherichia coli infections in humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 9(1):200. https://doi.org/10.1186/s13756-020-00863-x (en anglais seulement)
  • Maguire F, Rehman MA, Carrillo C, Diarra MS, Beiko RG. 2019. Identification of primary antimicrobial resistance drivers in agricultural nontyphoidal Salmonella enterica serovars by using machine learning. MSystems. 4: e00211-19. https://doi.org/10.1128/mSystems.00211-19 (en anglais seulement)
  • Manaia CM, Graham D, Topp E, Martinez JL, Collignon P, Gaze WH. 2020 Antibiotic Resistance in the Environment: Expert Perspectives. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/698_2020_472 (en anglais seulement)
  • Mangat C, Bekal S, Bharat A, Avery BP, Côté G, Daignault D, Doualla-Bell F, Finley R, Lefèbvre B, Parmley EJ, Reid-Smith RJ, Longtin J, Irwin RJ, Mulvey MR. 2019. Genomic investigation of the emergence of invasive multidrug resistant Salmonella Dublin in humans and animals in Canada. Antimicrobial Agents and Chemotherapy. pii: e00108-19. https://doi.org/10.1128/AAC.00108-19 (en anglais seulement)
  • Marano RBM… Scott A, Topp E, Cytryn E [74 authors]. 2020. A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Environ. Intern. 144, 106035. https://doi.org/10.1016/j.envint.2020.106035 (en anglais seulement)
  • Martin-Laurent F, Topp E, Billet L, Batisson I, Malandain C, Besse-Hoggan P, Morin So, Artigas J, Bonnineau C, Kergoat L, Devers-Lamrani M, Pesce S. 2020. Environmental risk assessment of antibiotics in agroecosystems: Ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum. Environ. Sci. Poll Res. 26(18):18930-18937. https://doi.org/10.1007/s11356-019-05122-0f (en anglais seulement)
  • Martin-Laurent F, Topp E, Billet L, Batisson I, Malandain C, Besse-Hoggan P, Morin So, Artigas J, Bonnineau C, Kergoat L, Devers-Lamrani M, Pesce S. 2020. Environmental risk assessment of antibiotics in agroecosystems: Ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum. Environ. Sci. Poll Res. 26(18):18930-18937. https://doi.org/10.1007/s11356-019-05122-0f (en anglais seulement)
  • Mataseje LF, Boyd DA, Mulvey MR, Longtin Y. 2019. Two hypervirulent Klebsiella pneumoniae isolates producing a blaKPC-2 carbapenemase from a Canadian patient. Antimicrobial Agents and Chemotherapy. 63:pii: e00517-19. https://doi.org/10.1128/AAC.00517-19 (en anglais seulement)
  • Petrillo M, Fabbri M, Kagkli DM, et al. 2021. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Research 2021, 10:80 https://doi.org/10.12688/f1000research.39214.1 (en anglais seulement)
  • Poulin-Laprade D, Brouard J-S, Gagnon N, Turcotte A, Langlois A, Matte JJ, Carrillo CD, Zaheer R, McAllister TA, Topp E, Talbot G. 2021. Resistance determinants and their genetic context in enterobacteria from a longitudinal study of pigs reared under various husbandry conditions. Appl Environ Microbiol 87:e02612-20. https://doi.org/10.1128/AEM.02612-20 (en anglais seulement)
  • Rehman MA, Hasted T-L, Persaud-Lachhman MG, Yin X, Carrillo C, Diarra MS. 2019. Genome analysis and multiplex PCR method for the molecular detection of coresistance to cephalosporins and fosfomycin in Salmonella enterica serovar Heidelberg. J. Food. Prot. 82:1938-49. https://doi.org/10.4315/0362-028X.JFP-19-205 (en anglais seulement)
  • Rehman MA, Rempel H, Carrillo CD, Ziebell K, Allen K, Manges AR, Topp E, Diarra MS. 2022. Virulence genotype and phenotype of multiple antimicrobial resistant Escherichia coli isolates from broilers assessed in a "One-Health" Perspective. Journal of Food Protection, Vol. 85, No. 2, 2022, Pages 336–354. https://doi.org/10.4315/JFP-21-273 (en anglais seulement)
  • Robertson J, Bessonov K, Schonfeld J, Nash JHE. 2020. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microbial Genomics 6(10). https://doi.org/10.1099/mgen.0.000435 (en anglais seulement)
  • Said LB, Emond-Rheault J-G, Soltani S, Telhig S, Zirah S, Rebuffat S, Diarra MS, Goodridge L, Levesque RC, Flis I. 2020. Phenomic and genomic approaches to studying the inhibition of multiresistant Salmonella enterica by microcin J25. Environ Microbiol. 22(7):2907-2920. https://doi.org/10.1111/1462-2920.15045 (en anglais seulement)
  • Sanderson H, Ortega-Polo R, Zaheer R, et al. 2020. Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants. BMC Microbiol. 20(1):20. https://doi.org/10.1186/s12866-019-1683-4 (en anglais seulement)
  • Schonfeld J, Clark C, Robertson J, Arya G, Eagle SHC, Gurnik S, Johnson R, Labbe G, Liu K, Kernaghan S, Mazzocco A, MacKinnon J, Ziebell K, Nash JHE. 2021. Complete Genome Sequences for 36 Canadian Salmonella enterica Serovar Typhimurium and I 1, 4[5], 12: i:–Isolates from Clinical and Animal Sources. Microbiology Resource Announcements 10(1). https://doi.org/10.1128/MRA.00734-20 (en anglais seulement)
  • Scott A, Murray R, Tien Y-C, Topp E. 2022. Contamination of hay and haylage with enteric bacteria and selected antibiotic resistance genes following fertilization with dairy manure or biosolids. Can J Microbiol. 2022 68(4):249-257. https://doi.org/10.1139/cjm-2021-0326 (en anglais seulement)
  • Steinkey R, Moat J, Gannon V, Zovoilis A, Laing C. 2020. Application of artificial intelligence to the in silico assessment of antimicrobial resistance and risks to human and animal health presented by priority enteric bacterial pathogens. Can Commun Dis Rep. 46-6: 180-185. https://doi.org/10.14745/ccdr.v46i06a05 (en anglais seulement)
  • Subirats J, Murray R, Scott A, Lau CH-F, Topp E. 2020. Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. Sci. Tot. Environ. 746, 141113. htpps://doi.org/10.1016/j.scitotenv.2020.141113 (en anglais seulement)
  • Subirats J, Murray R, Yin X, Zhang T, Topp E. 2021. Impact of chicken litter pre-application treatment on the abundance, field persistence, and transfer of antibiotic resistant bacteria and antibiotic resistance genes to vegetables. Sci Total Environ. 801:149718. https://doi.org/10.1016/j.scitotenv.2021.149718 (en anglais seulement)
  • Taggar G, Rehman MA, Boerlin P, Diarra MS. 2020. Molecular epidemiology of carbapenemases in Enterobacteriales from humans, animals, food and the environment. Antibiotics 9:693. https://doi.10.3390/antibiotics9100693 (en anglais seulement)
  • Tran TT, Scott A, Tien YC, Murray R, Boerlin P, Pearl DL, Liu K, Robertson J, Nash JHE, Topp E. 2021. On-farm anaerobic digestion of dairy manure reduces the abundance of antibiotic resistance-associated gene targets, and the potential for plasmid transfer. Appl. Environ. Microbiol. 87(14). https://doi.org/10.1128/AEM.02980-20 (en anglais seulement)
  • Turcotte C, Thibodeau A, Quessy S, Topp E, Beauchamp G, Fravalo P, Archambault M, Gaucher M-L. 2020. Impacts of short-term antibiotic withdrawal and long-term judicious antibiotic use on resistance gene abundance and cecal microbiota composition on commercial broiler chicken farms in Québec. Front Vet Sci. 7: 547181. https://doi.org/10.3389/fvets.2020.547181 (en anglais seulement)
  • Tymensen L, Booker CW, Hannon SJ, et al. 2019. Plasmid Distribution among Escherichia coli from Livestock and Associated Wastewater: Unraveling Factors That Shape the Presence of Genes Conferring Third-Generation Cephalosporin Resistance. Environ Sci Technol. 53(20):11666-11674. https://doi.org/10.1021/acs.est.9b03486 (en anglais seulement)
  • Xu Q, Si W, Mba OI, Sienkiewicz O, Ngadi M, Ross K, Kithama M, Kiarie EG, Kennes Y-M, Diarra MS, Zhao X. 2021. Research Note: Effects of supplementing cranberry and blueberry pomaces on meat quality and anti-oxidative capacity in broilers. Poultry Science. 100(3):100900. https://doi.org/10.1016/j.psj.2020.11.069 (en anglais seulement)
  • Yang C, Diarra MS, Choi J, Rodas-Gonzalez A, Lepp D, Liu S, Lu P, Mogire M, Wang Q, Gong J, Yang C. 2021. Effects of encapsulated cinnamaldehyde on growth performance, intestinal digestive and absorptive functions, meat quality, and gut microbiota in broiler chicken. Transl. Anim. Sci. 5(3):txab099. https://doi.org/10.1093/tas/txab099 (en anglais seulement)
  • Yang C, Kennes YM, Lepp D, Yin X, Wang Q, Yu H, Yang C, Gong J, Diarra MS. 2020. Effects of encapsulated cinnamaldehyde and citral on the performance and cecal microbiota of in broilers vaccinated or not vaccinated against coccidiosis. Poult Sci. 99(2):936-948. https://doi.org/10.1016/j.psj.2019.10.036 (en anglais seulement)
  • Yang C, Rehman MA, Yin X, Carrillo CD, Wang Q, Gong J, Yang C, Diarra MS. 2021. Antimicrobial Resistance Phenotype and Genotype of Generic Escherichia coli from Encapsulated Cinnamaldehyde and Citral Fed-Broiler Chicken. Journal of Food Protection. 84(8):1385-1399. https://doi.org/10.4315/JFP-21-033 (en anglais seulement)
  • Yousfi K, Usongo V, Berry C, Khan RH, Tremblay DM, Moineau S, Mulvey MR, Doualla-Bell F, Fournier E, Nadon C, Goodridge L, Bekal S. 2020. Source Tracking Based on Core Genome SNV and CRISPR Typing of Salmonella enterica Serovar Heidelberg Isolates Involved in Foodborne Outbreaks in Québec, 2012. Front Microbiol 11:1317. https://doi.org/10.3389/fmicb.2020.01317 (en anglais seulement)
  • Zaheer R, Cook SR, Barbieri R, Goji N, Cameron A, Petkau A, Polo RO, Tymensen L, Stamm C, Song J, Hannon S, Jones T, Church D, Booker CW, Kingsley Amoako K, VanDomselaar G, Ron R. Read RR, McAllister TA. 2020. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci Rep 10:3937. https://doi.org/10.1038/s41598-020-61002-5 (en anglais seulement)
  • Zaheer R, Lakin SM, Polo RO, et al. 2019. Comparative diversity of microbiomes and Resistomes in beef feedlots, downstream environments and urban sewage influent. BMC Microbiol. 19(1):197. https://doi.org/10.1186/s12866-019-1548-x (en anglais seulement)
  • Zaidi SZ, Zaheer R, Barbieri B, Cook SR, Hannon SJ, Booker CW, Church D, VanDomselaar G, Zovoilis A, McAllister TA. 2022. Genomic characterization of Enterococcus hirae from beef cattle feedlots and associated environmental continuum. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2022.859990 (en anglais seulement)
  • Zhang L, Said LB, Diarra MS, Fliss I. 2021. Inhibitory activity of natural synergetic antimicrobial consortia against Salmonella enterica on broiler chicken carcasses. Front. Microbiol. 12:656956. https://doi.org/10.3389/fmicb.2021.656956 (en anglais seulement)
  • Zhang T, Fukuda K, Topp E, Zhu Y-G, Smalla K, Tiedje JM, Larsson DGJ. 2020. Editorial: The environmental dimension of antibiotic resistance. FEMS Microbiol. Ecol., 96 (8):fiaa130. https://doi.org/10.1093/femsec/fiaa130 (en anglais seulement)
  • Zhang H, Yamamoto E, Murphy J, Carrillo C, Locas A. 2021. Shiga toxin-producing Escherichia coli (STEC) and STEC-associated virulence genes in raw ground pork in Canada. Journal of Food Protection. 84(11):1956–64. https://doi.org/10.4315/JFP-21-147 (en anglais seulement)
  • Zhang A-N, Gaston J, Dai C, Yin X, Li L-G, Poyet M, Groussin M, van Loosdrecht M, Topp E, Gillings M, Hanage W, Tiedje J, Moniz K, Alm E, Zhang T, Zhao S. 2021. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Comm. 12(1):4765. https://doi.org/10.1038/s41467-021-25096-3 (en anglais seulement)

Réussites

Contactez-nous

Pour en savoir plus, veuillez communiquer avec :
L'Initiative de R-D en génomique
Courriel : info@grdi-irdg.collaboration.gc.ca